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Outline 

 

 

 Parallel interior-point solver for stochastic optimization - PIPS-IPM 

– Algorithmic developments 

– Implementation 

– Performance studies: parallel efficiency and time-to-solution 

 

 Modeling frameworks - StochJuMP 

 

 Application: the impact of wind correlation on power grid economic dispatch 
operations 
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Stochastic two-stage problems with recourse 

 Traditionally known as two-stage stochastic programming with recourse 

 The first decision stage is deterministic and corresponds to the “now” decision 

 The  second decision stage depends on the random event and the first-stage 
decision; it gives event-dependent decisions. 

 The second-stage decisions are recourse actions that minimize the “bad” 
effects  caused by the first-stage decision. 

– In other words, the second-stage consists of a minimization problem 

 

 

 

 

 

 

 

 The objective is to minimize the cost associated with the first-stage decisions 
plus the expectation of the recourse cost. 
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Optimization under uncertainty 

 Two-stage stochastic programming with recourse (“here-and-now”) 
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Sample average approximation (SAA)  

0) ( )

0

W( ( )x b T x

x

   

00

0

0

0

A b

x

x 



subj. to. 

1
( , ) ( ) ( )

2

T Tf x x Q x x c   



Large-scale (dual) block-angular LPs 
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• In terminology of stochastic LPs: 
• First-stage variables (decision now): x0 

• Second-stage variables (recourse decision): x1, …, xN 

• Each diagonal block is a realization of a random variable (scenario) 

Extensive form 



Computational challenges and difficulties 

 May require many scenarios (100s, 1,000s, 10,000s …) to 
accurately model uncertainty 

 “Large” scenarios (Wi  up to 250,000 x 250,000) 

 “Large” 1st stage  (1,000s, 10,000s of variables) 

 Easy to build a practical instance that requires terabytes of 
RAM to solve 

Requires distributed memory 

 
 Current practice in power grid industry is to solve 24-hour horizon 

(deterministic) instances in under 1 hour  

 

 Need to solve under strict time requirements  

 
6 



Solving the SAA problem 

 Interior-point methods (IPMs) applied to the extensive form 

– Polynomial iteration complexity:                 (in theory, but is conservative) 

– IPMs perform better in practice (infeasible primal-dual path-following) 

– Two linear systems solved at each iteration 

 

– Direct solvers needs to be used because  IPMs linear systems are ill-conditioned and 
needs to be solved accurately 

 

– We solve the SAA problems with a standard IPM (Mehrotra’s predictor-corrector) and 

specialized linear algebra  PIPS-IPM (Petra et.al.) 

 

 Alternative algorithms: Benders-type decompositions, simplex, stochastic gradient 

– Much easier to implement but higher iteration complexity (not scalable) 

– Also inferior convergence (local) behavior (not accurate) 

– Ratio of computations and communication lower -> latency affects parallel efficiency 

– Prone to load imbalancing 

– Suitable for heterogeneous computing platforms (see ATR: Wright, Linderoth, 2005) 
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Linear algebra of primal-dual interior-point methods (IPM) 
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Convex quadratic problem 
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IPM Linear System 
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Special Structure of KKT System (Arrow-shaped) 
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The matrix                                                     is the Schur-complement 
of the diagonal                         block.  

Block Elimination 
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Multiply row i by                      and sum all the rows to obtain    



Solution Procedure for KKT System – a compact view 
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Parallel computational pattern 
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Dense fact backsolve 

Dense fact backsolve 

forw.subst. Dense solve 

forw.subst. Dense solve 

(implicit) factorization triangular solve 

Rank 1 

Rank 2 

Rank p 

Computations replicated 

1

1

T

i i

S

i

iiC B K B


 c

T

c cD LL C
\i iL r 0C\ r

\T

i iL r



Implementation considerations 

 

 Codename: PIPS-IPM 

 C++ code based on OOQP optimization solver (S. Wright & M. Gertz, ANL 2003) 

 Hybrid parallel: MPI+OpenMP/GPU. 

 

 Data matrices are sparse 

 

 Direct (sparse and dense) factorizations are needed 

– saddle-point linear systems: symmetric but indefinite 

– increasingly ill-conditioned as the optimality is approached. 

 

 Second-stage linear systems handled with off-the-shelf sparse linear solvers 
(MA27/57/86 or PARDISO, other can be adopted as well) 

 

 The dense Schur complement is solved using LAPACK/MAGMA. 
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Strong scaling – BG/P 
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# Nodes Scenarios Execution Scaling

per Node Time (min.) Efficiency

4,096 8 125. —

8,192 4 63. 99%

16,384 2 32. 98%

32,768 1 16. 96%

For real-time simulations “Compute” 
times need to be drastically reduced! 



Incomplete augmented factorization 
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                        UC24 – XC30                UC12 – BG/P 
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Weak scaling efficiency 
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Largest instance has 4.08 billion decision variables and 4.12 billion constraints. 



Strong scaling 
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The instance used in the XK7 runs has 4.08 billion decision variables 
and 4.12 billion constraints. 



Solve to completion – UC12 on BG/P 

Nodes/scens Wall time (sec) IPM Iterations Time per IPM 
iteration (sec) 

4096   3548.5 103 33.57 

8192   3883.7 112 34.67 

16384  4208.8 123 34.80 

32768 4781.7 133 35.95 
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 Before: 4 hours 10 minutes wall time to solve UC4 

problem with 8k scenarios on 8k nodes (on BG/P) 

 Now: UC24 – 32,768 scenarios in approx. 40 minutes 

 UC12 on BG/P 

 

 

 

 

 

 

 In addition to implementation, the algorithm is also 

scalable 
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StochJuMP - parallel algebraic modelling for 
stochastic optimization  
 

J. Huchette, M. Lubin, C. Petra , “Parallel algebraic modeling for stochastic optimization,” High 
Performance Technical Computing in Dynamic Languages (HPTCDL), SC’14. 



Expressing and constructing the stochastic optimization 
problem 
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 Express the problem in a human-readible, mathematical format 

 Automatic transformation to the low-level format of the solver(s) 
 efficient and distributed-memory generation of the large models 

 

 

 

 

 

 

 

 

 

 

 The problem’s structure is passed transparently to the solver 

 



JuMP – modeling language for Mathematical 
Programming in Julia 
 Miles Lubin (MIT), Iain Dunning (MIT) 

 Julia – a fresh approach to scientific and technical computing 

 high-level, high-performance, open-source dynamic language for technical computing 

 keeps productivity of dynamic languages without giving up speed (2x of C/C++/Fortran) 

 JuMP - compact, easy-to-use AML in Julia for modelling LP/QP/MILP/MIQCQP 

 

 

 

 Macros instead of operator overloading (known to have poor performance) 

 Efficient sparse internal generation and representation of the data 

 Nonlinear programming fully functional 
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StochJuMP - parallel algebraic modelling for stochastic 
optimization (Huchette, Lubin, Petra -2014) 
 Extension of JuMP for stochastic LP/QP/MILP/ MIQCQP 

 Interfaced with PIPS, runs efficiently on “Blues” LCRC cluster 

 Parallel, memory-distributed generation of the model 
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StochJuMP 

scalable 
compact 

efficient 
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On the role of wind covariance estimation in power 
grid dispatch – a case study using PIPS-IPM 

Petra et al., “Economic Impacts of Wind Covariance Estimation on Power Grid Operations,” 
submitted to IEEE Power Systems, 2014. 



Case study for the economic dispatch for Illinois grid 

 The network consists of 2522 lines, 1908 buses, 870 demand buses, 225 
generators, of which 32 are wind farms.  

 Wind “installed” capacity is 17%. Adoption in around 15%. 

 

 

 

 

 

 

 

 

 

 RBLW covariance matrix (“corr.”) vs diagonal covariance matrix (“indep.”) 

 

 Argonne’s BG/P and BG/Q platforms used in numerical simulations. 
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Integrating wind samples in economic dispatch models 

 Numerical weather forecasting is used to sample wind. 

 

 Approach 1: Wind farms bid energy based on their own, independent forecasts. The ISO 
then considers all the scenarios in the ED model. 

– Correlation among wind farms is lost 

– An exhaustive list of scenarios leads to a gigantic ED problem. Not clear how to bundle 
scenarios to reduce dimensionality. 

 Approach 2: Centralized forecast at the ISO level 
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 Here we show that Approach 2 should be considered: ignoring or missing correlation 
information leads to inefficient dispatch.  



Motivating example – role of correlation in dispatch 

 A very simplistic model: 3 generators (of which 2 wind farms and 1 thermal), 1 
demand node, no line constraints 

 Power outputs of the wind farms are                            and                           , and the 
correlation is     (                                                                            ). 

 

 How does correlation affect the optimal dispatch cost? 

 The optimization problem can be solved analytically, and the (expected) optimal 
dispatch cost is: 

 

 

 Here      and     are the cumulative distribution and probability distribution 
functions of  

 

 The optimal dispatch cost is an increasing function of the correlation   !  
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Motivating example - continued 
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 Ignoring positive correlation leads to an “optimistic dispatch”  

 Ignoring negative correlations results in an “pessimistic dispatch 

 

 

 

 In both cases higher dispatch costs are obtained over time: 

– “optimistic”: wind predicted more than wind realized: expensive reserves were used. 

– “pessimistic”: wind predicted less than wind realized: more (expensive) thermal power 
than necessary were dispatched. 

 



What about real-world large-scale power grid systems? 

 Analytical analysis of such complex systems is virtually impossible. 

 Computer simulations are needed. 
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Weather forecasting @ Argonne 
HPC simulation – 30 samples in RT 

(E. Constantinescu) 

Gaussian distribution of 
wind speeds 



Dispatch cost – correlation vs independent resampling 
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 1.42% gap or $10,967 (256 scenarios) 

 Gap can potentially add up to approx. $100 million over a year. 

95% confidence intervals for the dispatch cost for predicted and realized 
costs, each with (Corr) and without (Indep) correlation information 

Gap in 
dispatch cost 



Prices - correlation vs independent resampling  

 Gap also present in the ahead prices. 

 Opportunities for market arbitrage for players with better covariance information.  
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95% confidence intervals for prices at a typical bus  

Gap in prices 
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Thank you for your attention! 
 

Questions? 


